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Abstract
Dry bean (Phaseolus vulgaris L.) production in many regions is threatened by white

mold (WM) [Sclerotinia sclerotiorum (Lib.) de Bary]. Seed yield losses can be up

to 100% under conditions favorable for the pathogen. The low heritability, poly-

genic inheritance, and cumbersome screening protocols make it difficult to breed

for improved genetic resistance. Some progress in understanding genetic resistance

and germplasm improvement has been accomplished, but cultivars with high levels of

resistance are yet to be released. A WM multiparent advanced generation inter-cross

(MAGIC) population (n = 1060) was developed to facilitate mapping and breeding

efforts. A seedling straw test screening method provided a quick assay to pheno-

type the population for response to WM isolate 1980. Nineteen MAGIC lines were

identified with improved resistance. For genome-wide association studies (GWAS),

the data was transformed into three phenotypic distributions—quantitative, polyno-

mial, and binomial—and coupled with ∼52,000 single-nucleotide polymorphisms

(SNPs). The three phenotypic distributions identified 30 significant genomic inter-

vals [−log10 (P value) ≥ 3.0]. However, across distributions, four new genomic

regions as well as two regions previously reported were found to be associated

with resistance. Cumulative R2 values were 57% for binomial distribution using 13

genomic intervals, 41% for polynomial using eight intervals, and 40% for quantita-

tive using 11 intervals. New resistant germplasm as well as new genomic regions

associated with resistance are now available for further investigation.

1 INTRODUCTION

Common bean (Phaseolus vulgaris L.) is one of the most
essential and ancient worldwide crops (Akibode & Mare-

Abbreviations: GEMMA, genome-wide efficient mixed model association;
GWAS, genome-wide association studies; MAF, minor allele frequency;
MAGIC, multiparent advanced generation inter-cross; QTL, quantitative
trait loci; SNP, single-nucleotide polymorphism; WM, white mold.
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dia, 2011). One of the most important aspects of dry bean
lies in the amount of protein, vitamins, and minerals it pro-
vides to humans (Miklas et al., 2006b). The United States
is the fourth largest producer worldwide. Like many other
crops, common bean faces both abiotic and biotic stresses
during crop establishment, vegetative growth, and the repro-
ductive cycle (Fageria & Santos, 2008). In the case of biotic
stress, white mold (WM), caused by the fungus Sclerotinia
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sclerotiorum (Lib.) de Bary, is considered one of the most
important diseases limiting dry bean production in the United
States. When susceptible cultivars are planted in previously
infected fields, seed yield losses can be up to 100% (Schwartz
et al., 2007; Schwartz & Singh, 2013).

Several practices are recommended to manage WM, with
chemical control being the most common. However, chemi-
cal control has disadvantages such as high costs, environmen-
tal pollution, and variable fungicide efficacy (Bales & Chil-
vers, 2020; Bolton & Nelson et al., 2005; Harveson et al.,
2013; Markell et al., 2019). Therefore, genetic resistance has
been sought as a better option to control WM (Schwartz &
Singh, 2013). When breeding for genetic resistance to WM,
two mechanisms need to be considered: physiological and
avoidance (Miklas et al., 2001). Greenhouse screening using
the straw (Petzoldt & Dickson, 1996) and seedling straw
(Arkwazee & Myers, 2017) tests have provided reliable meth-
ods for detecting physiological resistance. Conversely, avoid-
ance is related to mechanisms associated with upright plant
architecture and reduced lodging, which contributes to a drier
canopy less ideal to the pathogen. Field testing is necessary
to screen for plant avoidance traits that reduce WM infection
(Myers et al., 1998; Carneiro et al., 2011). Therefore, a combi-
nation of both resistance mechanisms would be ideal for WM
resistance.

Historically, WM resistance has been difficult to incor-
porate into breeding materials because of low heritability,
cumbersome screening methods, and few sources of resis-
tance. Studies only identified quantitative trait loci (QTL)
with minor effects that are highly affected by the environment
(Ender & Kelly, 2005). Combining multiple QTL with minor
effects to enhance resistance levels while maintaining agro-
nomic performance has been a challenge using conventional
breeding methods (Miklas, 2007). New genetic strategies that
use multiparent advanced generation inter-cross (MAGIC)
populations would assist the search for quantitatively inher-
ited genes that affect WM resistance (Pascual et al., 2015)
and facilitate combining multiple QTL contributing to WM
resistance in lines with acceptable agronomic performance.

The inclusion of multiple parents and the additional inter-
mating among their offspring increases recombination in the
MAGIC population (Osorno et al., 2017), leading to improved
mapping resolution (Islam et al., 2016). The first MAGIC
population developed for plant genetics analysis was used to
discover QTL conditioning germination and bolting time in
Arabidopsis thaliana (L.) Heynh. (Kover et al., 2009). Since
then, MAGIC populations have been developed to investi-
gate genetics of plant height and hectoliter weight in wheat
(Triticum spp.) (Huang et al., 2012), biotic and abiotic stresses
in rice (Oryza sativa L.) (Bandillo et al., 2013), and fiber qual-
ity and yield in cotton (Gossypium hirsutum L.) (Islam et al.,
2016). Others, like Huynh et al. (2019) for cowpea [Vigna
unguiculata (L.) Walp.] and Ongom and Ejeta (2018) for

Core Ideas
∙ A MAGIC population was developed to facilitate

mapping and pyramiding of QTL related to white
mold resistance.

∙ New genomic regions associated with white mold
resistance are reported while some known regions
are confirmed.

∙ Pinto and great northern beans with improved
resistance to white mold were identified.

∙ Disease-related candidate genes for white mold
resistance were identified.

sorghum [Sorghum bicolor (L.) Moench] developed MAGIC
populations for the sole purpose of germplasm development.
Recently, the first MAGIC population developed in common
bean was used to both map and introgress QTL associated
with drought tolerance (Diaz et al., 2020). Additional exam-
ples in other crop species exist in the literature (see reviews
from Arrones et al. [2020] and Scott et al. [2020]).

Our goal was to develop a WM-MAGIC population for
germplasm development and genetic discovery of WM resis-
tance with a focus on pinto and great northern market classes
(Durango race), since pinto is the most grown and WM-
susceptible market class in the United States (Miklas et al.,
2004; Schwartz & Singh, 2013). The specific objectives of
this research were to (a) identify resistant lines from the
WM-MAGIC population with good agronomic performance
and (b) identify both new and previously reported genomic
regions associated with WM resistance.

2 MATERIALS AND METHODS

2.1 MAGIC population development

The WM-MAGIC population development had two primary
purposes: gene mapping and the production of inbred lines
with improved WM resistance combined with good agro-
nomic performance for primarily the pinto bean market class.
The pinto market class was targeted because it is the most pro-
duced and consumed market class in the United States and one
of the most susceptible market classes to WM. Therefore, the
founders of this WM-MAGIC population were all from race
Durango of the Middle American gene pool and the majority
were pinto bean seed types. The founders represent improved
germplasm or cultivars released by different breeding pro-
grams across the United States that were selected for high seed
yield potential, acceptable seed quality, partial physiological
resistance to WM, or upright plant architecture, which con-
tributed to WM disease avoidance (see Table 1). Four of the
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T A B L E 1 Multiparent advanced generation inter-cross population founders background information

Genotype Origin Market class Straw test Field test
USPT-WM-12 USDA–ARS Pinto Good Good

PT 7-2 USDA–ARS Pinto Susceptible Susceptible

‘El Dorado’ MSU Pinto Intermediate Very good

CO16079 CSU Pinto Good No data

ID14-4 USDA–ARS Pinto Good No data

‘La Paz’ Provita Pinto Susceptible Good avoidance

‘Lariat’ NDSU Pinto Susceptible Some avoidance

‘Powderhorn’ MSU Great Northern No data Good avoidance

Note. MSU, Michigan State University; CSU, Colorado State University. Reactions from each genotype to white mold (straw and field test) are based on previously recorded

data by the authors and also based on the studies from Osorno et al. (2010), Kelly et al. (2012, 2014), and Miklas et al. (2014).

founders are reported to have partial resistance to WM. USPT-
WM-12 is an upright pinto bean germplasm release (Miklas
et al., 2014) with partial resistance to WM expressed in the
greenhouse straw test and under field conditions. Its resistance
is derived in part from ‘ICA Bunsi’ navy bean. CO16079 is
an advanced pinto breeding line from Colorado State Univer-
sity with partial resistance to WM derived from three differ-
ent sources: USPT-WM-1 pinto bean (Miklas et al., 2006a);
PI 255956 scarlet runner bean (P. coccineus L.) (Brick et al.,
2008); and G122 (‘Jatu Rong’), a cranberry bean landrace
from India (Miklas et al., 2001). ID14-4 is an advanced pinto
breeding line from the USDA–ARS in Prosser, WA, with par-
tial resistance to WM in the straw test. The source of this
resistance is unknown. ‘Eldorado’ pinto bean, released by
Michigan State University (Kelly et al., 2012), has field resis-
tance to WM derived in part from USPT-WM-1 (Miklas et al.,
2006a). The two commercial pinto cultivars, ‘Lariat’ (Osorno
et al., 2010) and ‘LaPaz’, and the great northern ‘Powderhorn’
(Kelly et al., 2014) have upright architecture that contributes
to disease avoidance under low to moderate disease pressure.
Lariat, when grown under high nitrogen conditions, generates
excess biomass and lodges, which negates its disease avoid-
ance attributes. PT7-2 is a pinto breeding line from USDA–
ARS, Prosser, WA, with high yield potential under abiotic
stress conditions. PT7-2 is susceptible to WM in the field, so
it was used as a contrasting parent.

All crosses were made at the North Dakota State University
greenhouse complex and initial single crosses were made in
the fall of 2014. Figure 1 shows the crossing scheme among
the eight founder lines. The F1 plants of each initial cross
were crossed using a one-way funnel [(A×B) (C×D)]. The
F1 plants were tested with a polymorphic subset of insertion–
deletion markers evenly distributed across all chromosomes
(Moghaddam et al., 2014) to confirm they were true hybrids.
For each cycle, reciprocal crosses were conducted to offset
potential maternal effects and maternal inheritance. Only the
true F1 hybrids were used in subsequent crosses. After the
final crosses, the F1 seeds were planted to produce the F2 gen-

eration, which then went through three rounds of single-seed
descent from F2 to F5 populations. A total of 1,050 F5:7 inbred
lines were developed for this WM-MAGIC population.

2.2 Phenotypic evaluation in greenhouse

A subset of 500 lines was selected out of the original 1,050
lines from the WM-MAGIC population making sure that all
the original gametic combinations were represented in this set.
We included reciprocal F1 crosses, as well, to balance any
maternal effects or trait with maternal inheritance. Selected
lines were screened with S. sclerotiorum (ATCC 18683D-2),
better known as ‘isolate 1980’. This isolate was collected by
J. Steadman from an infected great northern cultivar in a field
near Mitchell, NE, in 1980. It has been widely used as control
or type in many WM studies in common bean (Mamidi et al.,
2016; Otto-Hanson, et al., 2011), providing consistent results,
especially in the checks. In addition, this isolate of S. sclero-
tiorum was selected for whole-genome sequencing (Amselem
et al., 2011; Derbyshire et al., 2017).

The experimental design was an augmented randomized
block with four replications and two samples (plants within
each replication). Two susceptible checks (‘Beryl’ and ‘Oth-
ello’) (Burke et al., 1995), two resistant checks (USPT-WM-
12 and ‘PC-50’) (Park et al., 2001; Miklas et al., 2014), and
50 genotypes of the WM-MAGIC population were included
within each incomplete block. Plants were grown in plastic
trays (10 by 15 cm) with Promix substrate. The greenhouse
temperature was set at 24 ± 2 ˚C during the day and 16 ± 2
˚C during the night. To prepare the inoculum, WM was first
grown directly from sclerotia in PDA media in a 100- by 20-
mm petri dish at 23 ˚C for 3 d. Then, mycelia from the most
outer part of the growth were transferred to a new petri dish
with agar. The new plates with the mycelia were placed in
a dark environment at room temperature for 2 d, after which
they were grown until mycelia covered 75% of the petri dish
(Petzoldt & Dickson, 1996; Arkwazee & Myers, 2017).
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F I G U R E 1 Crossing plan for white mold multiparent advanced generation inter-cross population development

The seedling straw test method described by Arkwazee
and Myers (2017) was used to screen the selected lines under
WM pressure. For this method, 10-d-old seedlings were
inoculated. By that time, the apical meristem had grown at
least 2 cm above primary leaves. Stems were cut 2–3 cm
above primary leaves. A straw of ∼5 mm diam. and 1–2 cm
length was sealed on one end and plugged with one plug of
agar in the other end. The mycelia plug was collected from the
outer side of the plate where the fungus was actively growing
in the petri dish. The straw with the plug was placed on the
decapitated part of the stem. The plants were scored 4 d after
inoculation using the disease severity scale described in the
protocol. Following the standard disease visual scale, lines
were considered resistant with values from 1 to 3, intermedi-
ate with a value of 4, and susceptible with values from 5 to 9.
Adjusted means (least square means) were calculated using
a linear mixed model in which genotypes were considered
fixed effects and reps, blocks, and samples were considered
random effects. Statistical analyses were made using JMP
14 Pro software (https://www.jmp.com/en_us/software/data-
analysis-software.html). Phenotypic means were considered
significantly different at α ≤ 0.05. Broad-sense heritability
(H2) (plot-mean based) was calculated from the seedling
straw test results from the greenhouse by estimating the
variance components from the resulting ANOVA table fol-
lowing the method by Annicchiarico (2002) and Falconer and
Mackay (1996). All phenotypic data from this greenhouse
screening is available online (https://hdl.handle.net/10365/
32231).

2.3 Phenotypic evaluation of selected lines
in the field

Based on the greenhouse screening, out of the 500 lines
evaluated, a total of 19 WM-MAGIC lines were identified
as resistant (score 3 or less). Therefore, during the 2019
growing season, 12 of these WM-MAGIC resistant lines that
had enough seed availability were tested in the field at the
Carrington Research and Extension Center in North Dakota
using a randomized complete block design with three repli-
cations. The study was planted on land with a prior his-
tory of Sclerotinia epidemics. To facilitate disease develop-
ment, supplemental overhead irrigation was applied with low
output rotating sprinklers with a 6-m (20-foot) spray radius
established on a 6.096-m offset grid. Irrigation was applied
as needed to keep the top 1-cm (one-half inch) of the soil
moist from late vegetative growth through late pod-fill and
to facilitate extended periods of canopy wetness (>24 h) dur-
ing bloom. White mold reaction was evaluated during the
R6 stage using the standard field visual disease scale (1–
9) as described by Miklas et al. (2001). Disease reaction
within each plot was scored from 1 to 9 on the basis of
combined incidence and severity of infection at physiolog-
ical maturity where 1 indicates no diseased plants, 2 indi-
cates 1–20% diseased plants or 1–5% infected tissue, 3 indi-
cates 20–30% diseased plants or 5–10% infected tissue, 4 indi
cates 30–40% diseased plants or 10–20% infected tis-
sue, 5 indicates 40–50% diseased plants or 20–30% infe
cted tissue, 6 indicates 50–60% diseased plants or 30–40%

https://www.jmp.com/en_us/software/data-analysis-software.html
https://www.jmp.com/en_us/software/data-analysis-software.html
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infected tissue, 7 indicates 60–70% diseased plants or 40–50%
infected tissue, 8 indicates 70–80% infected plants or 50–60%
infected tissue, and 9 indicates 80–100% diseased plants or
60–100% infected tissue.

In 2020, additional field and greenhouse validation tests
were conducted for 19 resistant lines: 12 lines evaluated in
2019 plus seven new lines that could not be evaluated in the
field in 2019 because of low seed availability. Regular straw
tests (instead of the seedling test) were conducted twice in
greenhouses at Prosser, WA, using isolate 1980 again. In addi-
tion, a field trial was conducted at the North Dakota State
Univ. Robert Titus Irrigation Research Site, 6.4 km (4 miles)
south of Oakes, ND. The field study was established on land
with a prior history of WM epidemics. White mold pressure
was facilitated by applying supplemental irrigation with the
overhead linear irrigation system; during bloom, all normally
scheduled irrigation was supplemented with the delivery of an
additional 0.64 cm of water applied within 24 h. A total of 30
genotypes (19 resistant WM-MAGIC lines plus both resistant
and susceptible checks) were tested in this trial using a ran-
domized complete block design with three replications. White
mold reaction was evaluated during the R8 stage instead of
R6 because of challenges related to SARS-COVID-19 logis-
tics during the 2020 growing season. Once again, the standard
1–9 field visual disease scale described above (Miklas et al.,
2001) was used to evaluate resistance and tolerance.

2.4 Genotyping-by-sequencing, sequence
alignment, SNP calling, and SNP imputation

Genomic libraries were developed using the optimized pro-
tocol developed by Schröder et al. (2016). These libraries
were sequenced at HudsonAlpha Institute for Biotechnology,
Huntsville, AL. The sequence of each genotype was separated
based on the barcode information using the FastX toolkit bar-
code splitter (http://hannonlab.cshl.edu/fastx_toolkit/). After
obtaining a unique fastq file for each genotype, barcodes
were trimmed from the sequences using FastA/Q Trimmer
from the FastX toolkit. Low-quality bases were trimmed using
SICKLE software developed by Joshi and Fass (2011) at the
University of California–Davis. With this software, reads with
<80 bp length were discarded, and a default quality threshold
of 20 was used.

The Burrows–Wheeler Alignment Tool (BWA-mem) (Li
& Durbin, 2009) and SAMtools (Li et al., 2009) were used to
map and sort the reads against the reference genome available
for common bean (Schmutz et al., 2014; https://phytozome.
jgi.doe.gov/pz/portal.html#!info?alias=Org_Pvulgaris).
Read group information for each genotype, including the
library, platform, and platform unit, provided by HudsonAl-
pha Institute, were added before SNP calling using Picard
tools. (http://broadinstitute.github.io/picard).

UnifiedGenotyper from Genome Analysis Toolkit v3.3
(GATK) (Mckenna et al., 2010) was used for calling SNPs.
The VCF file was filtered for the minimum read depth of two
using the GATK variant filtration algorithm. Then using an in-
house script, markers with 25% missing data were removed.
Finally, genotypes missing more than 90% of genetic informa-
tion were discarded. FastPHASE (Scheet & Stephens, 2006)
was used for imputing SNPs with missing data. The final
HapMap was generated from SNPs with a minor allele fre-
quency (MAF) > 0.01. This MAF was used instead of stan-
dard MAF > 0.05 since only 4% of the population was resis-
tant. A hapmap file with all the SNP data is available online
(https://hdl.handle.net/10365/32231).

2.5 Genome-wide association study

Phenotypic screening results obtained using the seedling
straw test data and sequencing data obtained from genotyping-
by-sequencing and SNP calling were used to perform the
GWAS. The adjusted means (lsmeans) obtained from
the quantitative (1–9) visual scale data from resistance–
susceptibility screening was used as the phenotypic data
for the GWAS. In addition, the data was also transformed
into polynomial and binomial distributions as suggested in
the GWAS pipeline described by Oladzad et al. (2019). For
polynomial, genotypes with a WM response of 1, 2, or 3 were
grouped in the resistant category; genotypes with a mean
score of 4 were grouped in the intermediate resistance cat-
egory; and genotypes with a WM response from 5 to 9 were
grouped in the susceptible category. For binomial, genotypes
with a mean score of 1, 2, or 3 were grouped as resistant,
and the rest of genotypes were grouped as susceptible. This
transformation was done to find alleles with minor and major
effects on the disease reaction. When GWAS is performed
using two categories (binomial), the identification of markers
associated with the trait is made under more rigorous criteria
compared with multiclass distributions (polynomial and
quantitative). The binomial transformation enhances iden-
tification of genomic regions having a major effect on the
trait but underrates alleles with minor influence. Thus, the
three phenotypic classes provide a complementary search for
genetic factors involved in resistance to WM. Genome-wide
efficient mixed model association (GEMMA) (Zhou &
Stephens, 2013) was used to perform the association map-
ping. Principal component analysis (Price et al., 2006) was
used to estimate population structure. Population relatedness
was calculated using the GEMMA algorithm for centered
relatedness. Bootstrapping was performed 10,000 times on
the empirical distribution of P values, and the SNPs in the
<0.01 and 0.1% of the distribution were considered highly
significant and significant, respectively (Oladzad et al., 2019).
Two models were tested using GEMMA in each phenotypic

http://hannonlab.cshl.edu/fastx_toolkit/
https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Pvulgaris
https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Pvulgaris
http://broadinstitute.github.io/picard
https://hdl.handle.net/10365/32231
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distribution. The MM (mixed model) includes population
structure and relatedness (2PCA + kinship matrix), and
the EMMA (efficient mixed-model analysis) model only
accounted for relatedness. The model with the lower mean
square deviation (Mamidi et al., 2011) was used for further
analysis. The phenotypic variation explained by the most
significant markers and the cumulative effect was calculated
using the likelihood-ratio-based R2 (Sun et al., 2010) using
the genABEL package available in R (Aulchenko et al.,
2007; R Core Team, 2015). Finally, Manhattan plots were
developed using the mhplot() function available in R (Zhao,
2007) to visualize the distribution of SNP P values in the
genome.

2.6 Candidate gene selection

To identify potential candidate genes associated with WM
disease reaction, genes in the genomic regions ±50 Kb from
the significant peak SNPs were identified using the genome
annotation of the V2.1 assembly of the P. vulgaris reference
genome (Schmutz et al., 2014; https://phytozome.jgi.doe.gov/
pz/portal.html#!info?alias=Org_Pvulgaris). Genes located in
those regions were further investigated by undergoing a lit-
erature and database search. Genes were selected as poten-
tial candidate genes based on their function related to disease
resistance metabolic pathways.

2.7 Parental contribution

The allele probabilities relative to each founder’s genotype in
the SNP pipeline generated from this MAGIC population can
be useful to not only confirm the founder’s diversity but also
investigate their contribution across the genome for each indi-
vidual. We created a model that included a subset of homozy-
gous SNPs (4,627) in founder lines, matrices of crosses for
each line, and phenotyping (scoring) data (Table 1). The phys-
ical map and the relative linkage map (Song et al., 2015) for
this subset of SNPs were also added to the model. The geno-
type probabilities with an error probability of 0.002 were com-
puted for all loci across the genome (Broman et al., 2019). The
R/qtl2 package was used to convert these probabilities to allele
probabilities relative to each founder (Broman et al., 2019).
The average contribution of each parent in the MAGIC popu-
lation was determined from allele probability matrices created
for each chromosome, and the plots of marker allele frequency
distribution in each founder as well as founder’s contributions
across the genome were generated.
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inter-cross lines, eight founder parents, and four checks evaluated for

their reaction to white mold in the greenhouse using the seedling straw

test

3 RESULTS

3.1 Selection of resistant genotypes to white
mold

The WM scoring data for the 500 lines screened from the
WM-MAGIC population using the seedling straw test was
normally distributed (Figure 2) as expected for traits con-
trolled by multiple genes. Line means ranged from 2 to 7 and
were statistically different (F value = 3.41; P > F = <.0001).
Resistant check PC-50 showed strong resistance with a score
of 3, while the response of USPT-WM-12 was scored as 5.
The mean of both susceptible checks was 6. Broad-sense her-
itability (H2) calculated from the seedling straw test (using the
ANOVA table) was 0.68.

Approximately 4% of the population (19 lines) was scored
as resistant, with ratings equal to or less than 3. From these
genotypes, four were great northern and 15 were pinto seed
types (Table 2). We confirmed the distribution of the founder
lines of this MAGIC population between intermediate resis-
tance to susceptible, and some breeding lines had lower dis-
ease scores than any of the founder lines (Table 2; Figure 2),
suggesting that the WM-MAGIC population was expressing
transgressive segregation. Founder lines CO16079 and ID-14-
4 expressed intermediate resistance with an average value of 4
while Eldorado, La Paz, Lariat, USPT-WM-12, and Powder-
horn had susceptible scores of 5. Founder line PT7-2 was the
most susceptible, with an average score of 6.

https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Pvulgaris
https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Pvulgaris
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T A B L E 2 White mold (WM) mean score (seedling straw test) of

the resistant genotypes from the WMM population, its founder parents,

and the WM checks with its market class

Genotype Market class Score ± SEa

WMM-68 Pinto 2.7 ± 0.7195

WMM-109 Great Northern 3.2 ± 0.6848

WMM-165 Pinto 3.5 ± 0.6315

WMM-166 Pinto 3.5 ± 0.6319

WMM-185 Pinto 3.5 ± 0.6558

WMM-190 Pinto 3.2 ± 0.6843

WMM-214 Great Northern 2.4 ± 0.7198

WMM-219 Pinto 3.3 ± 0.6856

WMM-299 Pinto 2.1 ± 0.8829

WMM-300 Pinto 3.1 ± 0.6104

WMM-483 Pinto 3.0 ± 0.6104

WMM-506 Great Northern 3.3 ± 0.6843

WMM-541 Pinto 2.8 ± 0.6559

WMM-580 Pinto 3.2 ± 0.6560

WMM-739 Great Northern 3.4 ± 0.6316

WMM-820 Pinto 3.4 ± 0.6861

WMM-851 Pinto 3.5 ± 0.7195

WMM-922 Pinto 3.1 ± 0.7194

WMM-1043 Pinto 3.3 ± 0.6560

ID14-4 Pinto 4.0 ± 0.5774

CO16079 Pinto 4.0 ± 0.5774

‘El Dorado’ Pinto 5.0 ± 0.5774

‘La Paz’ Pinto 4.5 ± 0.7071

‘Lariat’ Pinto 4.7 ± 0.5774

‘Powderhorn’ Great Northern 4.8 ± 0.5000

PT7-2 Pinto 5.5 ± 2.0817

USPT-WM-
12

Pinto 4.8 ± 0.4894

‘PC-50’ Cranberry 2.6 ± 0.4911

‘Othello’ Pinto 6.0 ± 0.4883

‘Beryl’ Great Northern 6.1 ± 0.4897

aWhite mold score based on the 1–9 visual scale from Arkwazee and Myers (2017).

Even though consistency in results is a concern with WM
screening, the statistical analysis did not find significant
differences in the sampling within replication (F value =
0.85; P > F = .2231). Also, no significant differences were
observed among replications with this scoring procedure (F
value = 0.68; P > F = 1.0000), implying the greenhouse
protocol was repeatable across both samples and replications.

3.2 Phenotypic evaluation of selected lines
in the field

In the 2019 inoculated field trial at Carrington, ND, using
a subset of 12 WM resistant lines listed in Table 2, disease

pressure was very high and at least one line (WMM-214),
showed resistance or tolerance across all replications consis-
tently, while two other lines showed good levels of resistance
in only 1 or 2 reps. In 2020, straw test results using the
traditional procedure that inoculates 28-day old plants were
replicated twice in greenhouses at Prosser, WA. During
the first test, disease pressure was so high that none of the
19 WM-MAGIC lines evaluated obtained a score of 3 or
less. However, in a second screening (Supplemental Table
S1), at least two lines (WMM-214 and WMM-219) showed
disease scores close to 3 (data not shown). The inoculated
field trial conducted at Oakes, ND, once again exhibited
very high WM pressure as evidenced by the high scores
for the susceptible checks (Supplemental Figure S1). The
WM-MAGIC lines 214 and 219 once again had disease
scores between 3 and 4 across all reps, suggesting high levels
of resistance not only in greenhouse tests but also in the
field. In addition, lines WMM-483 and WMM-300 showed
intermediate levels of resistance (scores of 4–5) combined
with desirable upright plant architecture, suggesting a com-
bination of physiological resistance as well as avoidance
mechanisms.

3.3 GWAS

After filtering sequencing data based on read depth, qual-
ity, heterozygosity, and minor allele frequency, 428 genotypes
were used to perform GWAS with a total of 52,201 SNPs.
Of the two models tested for each of the phenotypic distri-
butions, the mixed linear model had the lowest mean square
deviation value (0.0002 for quantitative, 0.0003 for polyno-
mial, and 0.0015 for binomial) for all the phenotypic distribu-
tions evaluated. Only GWAS results using mixed linear model
are presented (Figure 3).

The three phenotypic distributions identified 30 significant
genomic intervals (−log10 (P value) ≥ 3.0) associated with
resistance of dry bean to WM (Table 3). The quantitative phe-
notypic distribution identified 11 intervals, which accounted
for 40% of the cumulative phenotypic variation, the polyno-
mial distribution identified eight intervals that explained 41%
of the cumulative phenotypic variation, and the binomial dis-
tribution identified 13 intervals that explained 57% of the phe-
notypic variation. Of the 30 genomic regions identified, one
region was common among the three phenotypic classes, and
one region was in common between polynomial and binomial
distributions. Also, at least two genomic regions of the 30
identified in this research were previously reported, and these
results helped to validate those regions.

Region Pv11:17.24 Mb was identified with the same SNP
peak SNP (S11_17248499) for both the polynomial and bino-
mial phenotypic data. This interval located at 8 Kb upstream
from the gene model Phvul.011G117400 annotated as an
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F I G U R E 3 Manhattan plots and its respective quantile–quantile plots of (a) quantitative data, (b) polynomial data, and (c) binomial data for

white mold multiparent advanced generation inter-cross population resistance to white mold. Green lines represent a cutoff of .01 and .1. Markers

red-colored passed the cutoff value of .01, and blue-colored markers only passed the cutoff value of 0.1

Ankyrin repeat family protein. This SNP is the most signif-
icant in the binomial distribution, as it alone explains 17.7%
of the phenotypic variation. The second Pv11 region is shared
between the three phenotypic distributions and is located at
Pv11:25.67 Mb. Gene model Phvul.011G123500 was found
in that region and is annotated as a receptor-like-protein-
kinase HAESA.

Two regions were associated with resistance-related gene
clusters: one with the quantitative data distribution that was
already reported (Miklas et al., 2013) and one in the binomial
distribution. For the quantitative distribution, QTL WM 7.4
was confirmed with peak SNP S07_30821924 [−log10 (P
value) = 3.50] harboring gene models Phvul.007G187700,
Phvul.007G188100, Phvul.007G188300, and Phvul.007
G188900 annotated as pathogenesis-related-4, prenylated
RAB acceptor 1.E, Malectin/receptor-like protein kinase
family protein, and Pentatricopeptide repeat (PPR) super-
family protein, respectively. For the binomial data, the
Pv11:52.88 region with peak SNP S11_52882970 [−log10

(P value) = 3.87] was near gene models Phvul.011G209000,
Phvul.011G208900, Phvul.011G208800, Phvul.011G208
700, Phvul.011G208400, Phvul.011G208100, and Phvul.011

G208000 annotated as Eukaryotic aspartyl protease family
proteins.

3.4 Parent’s genetic contribution

Since the development of a MAGIC population includes eight
founder parents, we should expect each parent’s genetic con-
tribution to be around 12.5% absent any significant related-
ness among any of the parents in a genomic region. For this
WM-MAGIC population, intermating did not include every
possible cross, and the nonequal inclusion of gametes from
each founder parent might be a concern. Thus, we calcu-
lated the average parental contribution and confirmed it to be
around 12.5% (Figure 4) with parts of chromosomes Pv02,
Pv07, Pv10, and Pv11 showing some deviations.

4 DISCUSSION

The discovery of genetic factors controlling quantitatively
inherited disease resistance requires high quality phenotypic
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T A B L E 3 Peak single-nucleotide polymorphisms (SNPs) (0.1%) associated with white mold resistance in the white mold multiparent advanced

generation inter-cross population in quantitative, polynomial, and binomial phenotypic distributions

Type of phenotype Interval SNP Peak SNP
Cumulative
variation

Chromosome

Genomic
interval or
position Base −Log10(P) Variation

—%—

Quantitative 4 26.44 S04_26441542 G/C 3.59 6.2 40

5 27.36 S05_27362293 C/T 3.06 1.7

7 24.05 S07_24051914 G/A 3.04 4.7

30.81–30.82 S07_30821924 G/A 3.50 6

8 40.19–50.52 S08_40526382 C/T 3.20 4.8

63.04 S08_63046675 C/A 3.20 5.1

11 25.67a S11_25670846 G/A 3.50 6.6

34.17 S11_34170894 C/T 3.22 5

36.35 S11_36353491 C/T 3.12 4.8

39.84–39.90 S11_39903426 T/A 3.55 6.3

52.4 S11_52401988 C/T 3.22 6.1

Polynomial 2 47.80–47.91 S02_47914415 T/C 4.5 7.8 41

4 22.62 S04_22625095 C/T 3.44 5.9

47.08 S04_47083551 C/G 3.28 5.3

11 17.24† S11_17248499 C/T 4.11 7.2

23.53 S11_23535005 G/A 3.65 6.3

25.67a S11_25670803 G/A 4.57 7.81

37.03 S11_37039553 C/T 3.44 5.5

44.61 S11_44618477 A/G 3.13 4.9

Binomial 1 24.24 S01_24248170 T/G 4.25 7.8 57

4 13.33 S04_13332737 T/A 3.97 6.3

5 18.11 S05_18115593 A/G 3.92 7.8

22.99 S05_22999183 C/T 4.4 8.3

7 29.3 S07_29300748 T/C 4.09 6

8 27.8 S08_27805286 G/C 5.83 10.2

31.13 S08_31137455 A/C 3.89 7.3

10 24.58 S10_24587949 G/A 3.84 7.18

11 17.24b S11_17248499 C/T 9.6 17.7

25.67a S11_25671010 C/T 3.63 7.1

34.38 S11_34384862 T/C 5.35 10.4

48.13 S11_48139011 A/G 3.89 5.8

52.88 S11_52882970 T/C 3.87 7.6

aRegion was found in common in the three different phenotypic classes.
bRegion was found in common in binomial and polynomial phenotypic distributions.

data and high-resolution genotypic data. The response to the
WM pathogen is highly affected by the environment, making
it a challenging disease to evaluate phenotypically. Among
the commonly used protocols to evaluate the resistance of
common bean to WM, the conventional straw test method
(Petzoldt & Dickson, 1996) has been the most important. The

disadvantage of this protocol is the age of the plant required
for screening, increasing the demand for both space and time.
The seedling straw test method (Arkwazee & Myers, 2017)
overcomes these limitations and provided repeatable WM
infection response data in this study. This seedling protocol
takes 21 d from the day of sowing seed to the day of scor-
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F I G U R E 4 Founder’s genetic contribution to the white mold multiparent advanced generation inter-cross population

ing, representing a reduction of 15 to 22 d compared with the
conventional straw test method (Petzoldt & Dickson, 1996).
This allows for efficient use of time, space, and experimen-
tal resources. While this protocol is suitable to identify resis-
tant genotypes, it is more challenging to identify intermediate
resistance because the defense response of young seedlings
may not be robust enough to combat the aggressive growth
of the pathogen. For this reason, we considered genotypes
as resistant when they present values from 1 to 3. Genotypes
with these scores were able to continue growing despite infec-
tion since primary leaves were still healthy. Genotypes with
a score of 4 were considered to have an intermediate resis-
tance since they had low chance to survive, and genotypes
with values from 5 to 9 were considered susceptible since they
never survived. Intermediate resistant genotypes may need to
be evaluated using the conventional straw test method to bet-
ter differentiate their reaction to WM. Broad-sense heritabil-
ity (H2) calculated from the seedling straw test data (using the
ANOVA table) was 0.68. Previous studies have shown simi-
lar values ranging between 0.40 and 0.80 (Kolkmann & Kelly,
2003; Miklas & Grafton, 1992; Miklas et al., 2001, 2004).
However, since this value is estimated from only one green-
house experiment, caution needs to be exercised when inter-
preting this estimate considering the results presented and the
demonstrated complex nature of the resistance to WM poten-
tially is due to unknown gene interactions among multiple
loci with small genetic effects. It is expected that estimates
of narrow-sense heritability (h2) would be lower since it only
account for additive effects.

The complex nature of WM resistance (Miklas et al., 2001,
2006a; Soule et al., 2011) complicates the introgression of
resistance from genotypes of one gene pool to another or

between landraces, accessions, or market classes. Moreover,
it makes it challenging to introgress and combine resistances
into dry bean genotypes with desirable agronomic traits for
the various bean market classes. Some WM resistant dry
bean genotypes have been developed (Tu & Beversdorf, 1982;
Singh et al., 2007; Saladin et al., 2000; Schwartz & Singh,
2013), but only a few pinto bean improved germplasm lines
with some level of resistance have been developed thus far.
USPT-WM-12 (Miklas et al., 2014) is the only pinto bean
improved germplasm that has provided a mixture of inter-
mediate physiological resistance with plant avoidance mech-
anisms and good agronomic traits that can be effectively
exploited by breeders. The WM-MAGIC population contains
at least 19 resistant lines (15 pinto and four great northern)
based on the seedling straw test screening, which surpassed
the physiological resistance of USPT-WM-12. The identifica-
tion of lines with higher levels of seedling straw test resistance
to WM than any of the founders likely results from combin-
ing different major- and minor-effect resistance alleles from
the founders via recombination during the development of the
WM-MAGIC population. In addition, screening of the second
set of 560 lines is currently underway and will allow the iden-
tification of additional resistant lines.

Screening of the 19 WM-MAGIC resistant lines using the
regular straw test in 2020 plus the field evaluations made in
2019 and 2020 allowed the identification of few lines with
either high levels of resistance (WMM-214 and WMM-219)
or intermediate resistance combined with upright plant archi-
tecture (WMM-300 and WMM-483) that showed consistent
levels of resistance across different tests and environments.
These consistent results are of special importance given that
greenhouse evaluations were made with isolate 1980, but field
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evaluations in North Dakota were made with local isolates,
which shows that the high levels of resistance are maintained
even with potential differences among strains and isolates;
however, this needs to be investigated further. Line WMM-
214 showed the highest levels of resistance; however, it also
exhibited very late maturity and stay-green traits, which may
be both correlated to WM resistance (Miklas et al., 2004)
but are undesirable for cultivar releases. Additional crosses
with this WMM-214 will be required to transfer the high
levels of WM resistance into genotypes with better agro-
nomic traits. Nonetheless, WMM-214, WMM-219, WMM-
300, and WMM-483 represent new resistance sources for
breeding programs especially for the pinto and great northern
market classes. Powderhorn is the only reported great north-
ern genotype with good field avoidance to WM (Kelly et al.,
2014). Field yield trials are currently underway during the
2021 growing season with selected WMM resistant lines and
checks to identify lines that combine either high or interme-
diate levels of WM resistance with good agronomic perfor-
mance.

Association mapping using the seedling straw test pheno-
typic data and the 52,000 SNP HapMap identified new genetic
factors associated with WM resistance in dry bean. The quan-
titative 1–9 scale may compromise the GWAS detection of
alleles conferring a major effect on resistance. Thus, we clas-
sified the phenotypic data as three different phenotypic dis-
tributions (quantitative, polynomial, and binomial) for the
GWAS analysis. The GEMMA software (Zhou & Stephens,
2013) is especially useful when data is viewed as different
distributions because it first determines the type of phenotypic
distribution and then selects the appropriate statistic method
to protect the model against errors (Zhou & Stephens, 2013).

By applying the three phenotypic distribution approaches,
Oladzad et al. (2019) identified SNPs and intervals with major
and minor effects for quantitative resistance to Rhizoctonia
solani in common bean. The significant SNPs identified with
the binomial data had the highest phenotypic variation, and
the peak SNPs were the most significant based on the P val-
ues when compared with the other phenotypic distributions.
The binary distribution data also identified more regions asso-
ciated with WM resistance. As suggested by Oladzad et al.
(2019), we found the binary distribution data to identify genes
conferring major effects on the disease reaction because of
the strict classification of the disease response as either resis-
tant or susceptible. The advantage of the aggressive seedling
straw test method is that it easily distinguishes genotypes with
a stronger resistance response from those with an intermediate
resistance response that appear to be active at a later growth
stage. Thus, the young seedling phenotypic data set is proba-
bly ideal for the binomial GWAS methodology.

The GWAS detected new genotype–phenotype associa-
tions for all three phenotypic distributions on chromosome
Pv11. The Pv11:25.67 Mb peak was common across all the

phenotypic distributions, and gene model Phvul.011G123500
was identified as a potential candidate gene. This gene is an
ortholog of gene HSL1, a leucine-rich-repeat receptor kinase
(Jinn et al., 2000) in Arabidopsis (www.uniprot.org). Leucine-
rich-repeat receptor kinases have various functions in plant
immunity including acting as a detection system for the pres-
ence of pathogens in external layers of the plant (Tang et al.,
2017). The percentage of variation explained by this genomic
region was the highest in the polynomial and quantitative
approaches (7.8 and 6.6%, respectively).

A second Pv11 region at Pv11:17.24 Mb was identi-
fied with both binomial and polynomial data. Gene model
Phvul.011G117400, annotated as an ankyrin repeat protein
family, was located 8 Kb downstream from the most sig-
nificant SNP. This protein family is well studied in many
crops and has a confirmed role in plant resistance against
pathogens. Researchers demonstrated that one ankyrin repeat-
containing protein in rice serves as a positive regulator in
basal defense against rice blast (Magnaphorte oryzae) and is
activated by the jasmonate and salicylic acid-signaling path-
ways (Mou et al., 2013). In Arabidopsis, a gene related to
an ankyrin repeat protein plays an essential role as a signal-
ing element of receptor-like proteins (RLP) gene-regulating
immunity against bacterial pathogens (Yang et al., 2012).
Other ankyrin repeat genes were identified in past studies as
candidate genes for salt and drought stress in soybean (Glycine
max L.) and common bean (Zhang et al., 2016; Cortés & Blair,
2018). The peak SNP used for detecting this region in the
binomial distribution explains 17.7% of the variation and has
the highest P value in this study. This could be an allele con-
ferring major effect on the resistance as its effect was greatest
with the binomial data.

Besides the shared regions, we also identified one cluster
of genes in Pv11 with the binomial approach at Pv11:52.88
Mb. A family of seven genes, annotated as members of the
eukaryotic aspartyl protease protein family, were identified
within ±50 Kb of the peak SNP. Overall, proteases play a
role in host–parasite interactions. They are found in both
the plants and their pathogens and are involved in defend-
ing plants from pathogens and in camouflaging pathogens
from plant proteases and receptors of pathogens effectors
(Hou et al., 2018). Gene models identified in this cluster are
orthologs to the CDR1 gene from Arabidopsis. The CDR1
gene is involved in the induction of local and systemic defense
responses (Xia et al., 2004). Another study found an aspartyl
protease to be an important factor in promoting the activa-
tion of BAG6-mediated basal resistance gene (Li & Dickman,
2016). The BAG6 gene in Arabidopsis helps enhance the resis-
tance response against Botrytis cinerea (de Bary) (Li & Dick-
man, 2016), a pathogen that shares features with S. sclerotio-
rum because of its necrotrophic lifestyle.

This study identified three major novel QTL regions
involved in common bean resistance to WM, and there-

http://www.uniprot.org
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fore, we are proposing Pv11:17.24 Mb, Pv11:25.67 Mb, and
Pv11:52.88 Mb to be named as WM11.2, WM11.3, and
WM11.4, respectively. Besides the identification of novel
regions, this research also validated QTL identified pre-
viously. With the peak at SNP S07_24051914, this study
confirmed WM7.4 previously identified in three different
biparental populations (Perez-Vega et al., 2012; Miklas et al.,
2013). One of those three populations share USPT-WM-12
(Vasconcellos et al., 2017) as a common parent with this WM-
MAGIC population. Another region, previously reported as
WM8.3 (Miklas & Delorme et al., 2003; Maxwell et al., 2007;
Soule et al., 2011), was fine mapped and pyramided with
WM7.1 (Mamidi et al., 2016). Our research found marker
S08_40526382 to be significant and close to this region.

The peak markers S11_17248499, S11_25670846,
S11_52882970, S07_24051914, and S07_30821924 for
WM11.2, WM11.3, WM11.4, and WM7.4 QTL have
potential for breeding purposes. Those markers presented
significant P values, and at least one gene related to biotic
stress was found in a window of 50 Kb upstream and
downstream. Regarding new resistant germplasm, dry bean
breeding programs around the United States are already
using some of the 19 resistance lines from the WM-MAGIC
population in crosses geared toward future development of
pinto bean cultivars with improved resistance to WM.

We were able to confirm the equal contribution of each par-
ent in this population following the procedures in Dell’Acqua
et al. (2015). Hybridization in common bean is laborious and
inefficient as each cross provides only two to four hybrid
seeds. For that reason, we could not perform intermating for
each possible cross combination, so instead we followed a
one-way funnel cross scheme. Despite this scheme and its
limitations, Figure 4 shows that gametes from each founder
were essentially equally represented, even though F1 plants
were not intermated among them, and this equal representa-
tion of gametes may be one of the reasons for the normal phe-
notypic distribution obtained (Figure 2). However, the mini-
mal variation in parental contribution in some chromosomes
might be due to bias on sampling generated during the crosses,
SNP location and sampling, or cross-over deviations caused
by linkage disequilibrium. In addition, one of the founders
of the WM-MAGIC population, CO16079, is the product of
interspecific crosses with scarlet runner bean and, therefore,
we speculate that this could explain in part the lack of recom-
bination observed in some portions of specific chromosomes.
Similar results are reported by Dell’Acqua et al. (2015), in
which some founders had higher contribution within some
sections of specific maize chromosomes. In conclusion, and
despite its limitations, the one-way funnel method used in
this study still allowed for good representation of all poten-
tial gametic combinations perhaps at a higher rate than ini-
tially thought. This crossing scheme could be used in other
crops with similar limitations regarding crosses and amount

of hybrid seed produced and still allowing a good gametic rep-
resentation and allele recombination.

The WM-MAGIC population can be used to identify new
sources of variation and new genomic regions associated with
other traits of interest if the founder’s parents present polymor-
phism for the phenotype of interest. For example, preliminary
evaluations found the eight founder parents are polymorphic
for resistance to race 20-3 of Uromyces appendiculatus, the
causal agent of bean rust (Ixcotoyac-Cabrera, 2021).

Future research is planned for testing the 19 resistant lines
for agronomic traits in the field and in the WM nurseries avail-
able across the United States so the resistance lines can be
challenged with additional strains and isolates of the pathogen
across other regions. In addition, this will help to further select
among the 19 lines for those with the best WM avoidance
characteristics via field evaluation. The genotypic and pheno-
typic data obtained from this research will be further used to
perform genomic prediction studies, and the remaining geno-
types from this WM-MAGIC population (n = 560) will be
used for validation. Both phenotypic and genotypic datasets
are available at an online repository
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